Aluminum Tris(2,6-diphenylphenoxide)-ArCOCl Complex for Nucleophilic Dearomatic Functionalization

Susumu Saito, Toshihiko Sone, Masaaki Murase, and Hisashi Yamamoto*

Graduate School of Engineering, Nagoya University CREST, Japan Science and Technology Corporation (JST) Chikusa, Nagoya 464-8603, Japan

Received April 25, 2000
Recently, we demonstrated the nucleophilic dearomatization of benzaldehyde (PhCHO) complexed with aluminum tris(2,6diphenylphenoxide) (ATPH) (Figure 1), ${ }^{1}$ which proceeded smoothly with a variety of nucleophiles. ${ }^{2}$ Unfortunately, however, conjugate addition to the ATPH-PhCHO complex did not proceed effectively with smaller nucleophiles (Scheme 1). For example, MeLi and the lithium enolates of methyl acetate undergo 1,2 -addition predominantly. The lithium enolates of several ketones, methyl propionate, tert-butyl acetate, PhLi, and vinyl- and allyllithiums give equal amounts of 1,2 - and 1,6 -adducts. In sharp contrast, treatment of a toluene solution of ATPH (1.1 equiv) with benzoyl chloride ($\mathrm{PhCOCl} ; 1.0$ equiv) at $-78^{\circ} \mathrm{C}$, followed by addition of $\mathrm{MeLi}(3.0 \text { equiv })^{3}$ and workup with concentrated HCl gives 1,6 - and 1,4 -adducts $\mathbf{1 a}$ and $\mathbf{1 b}$ in a ratio of 2.6:1 in 99% isolated yield (Scheme 1).

Nucleophiles that add in a 1,6 -manner to ATPH-PhCOCl include Grignard reagents ($i-\mathrm{PrMgBr}$ and $t-\mathrm{BuMgCl}$), which are ineffective for the conjugate addition to the ATPH-PhCHO complex. Figure 2 shows that enhanced regioselectivities (1,6vs 1,2 -addition) are achieved with the ATPH- PhCOCl complex. Addition products can be isolated as acids or esters by altering workup conditions. In each of these cases, 1,2-adduct could not be detected by ${ }^{1} \mathrm{H}$ NMR analysis.

Insight regarding the change in product distribution in the two types of complexes may be derived from a comparison of their X-ray crystal structures. The X-ray crystal structure of ATPHPhCHO, Figure $3 \mathrm{a},{ }^{4}$ shows one face of the extended π-system to be relatively exposed, at least in the region distal to the carbonyl group. On the other hand, the X-ray crystal structure of ATPHPhCOCl, ${ }^{4}$ Figure 3b, revealed that two of the phenyl rings (black) of ATPH and the flat PhCOCl form a sandwich structure, rendering the $\mathrm{C}=\mathrm{O}$ highly congested. The $\mathrm{C}=\mathrm{O}$ of ATPHPhCOCl has a single bond-like character. The $\mathrm{Al}-O=C$ bond of $1.235(4) \AA$ is longer than that of $\mathrm{Al}-O=C H P h(1.14(1) \AA) .{ }^{5}$ This is consistent with the FT-IR measurement of the ATPH-PhCOCl and ATPH-PhCHO complexes in solution $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C}\right)$. The frequency of the carbonyl of ATPH-PhCOCl is shifted to a lower frequency as a result of enhanced conjugation relative to that of the free substrates by $42 \mathrm{~cm}^{-1} .{ }^{6}$ The ATPH-PhCHO complex,

[^0]

Figure 1. Molecular structure of ATPH.

Figure 2. Conjugate addition of various nucleophiles using the ATPHPhCOCl . The values in parentheses are ratios of $1,6-$ and 1,4 -adducts, which were determined by ${ }^{1} \mathrm{H}$ NMR analysis. Combined yields of 1,6and 1,4 -adducts are indicated. Acids and esters are obtained with the following conditions: $-78{ }^{\circ} \mathrm{C}$ to room temperature; acid, concentrated HCl ; ester, $\mathrm{Et}_{2} \mathrm{O}$ solution of HCl , followed by MeOH .

Figure 3. The X-ray crystal structures of (a) ATPH-PhCHO and (b) ATPH-PhCOCl.

Scheme 1

on the other hand, exhibits no detectable shift. In fact, the π-deficiency of PhCOCl is significantly enhanced by complex-

[^1]

Figure 4. Schematic depiction of the induced conformational changes of ATPH as a "molecular tweezer" for effective inclusion of PhCOCl . The three benzene rings correspond to the darkened phenyls in Figure 3b.
ation with ATPH. ${ }^{13} \mathrm{C}$ NMR measurements $\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $-30^{\circ} \mathrm{C}$) show downfield shifts $(\Delta \delta)$ for the carbonyl carbon from free to bound substrates of 9.49 ppm for ATPH-PhCHO and 18.0 ppm for ATPH-PhCOCl. ${ }^{7}$ The π-stacking between two π-donors (ATPH phenyls) and one π-acceptor (complexed PhCOCl) involving the carbonyl carbon may act as a "molecular tweezer" ${ }^{8}$ to stabilize the ATPH- PhCOCl complex (Figure 4). The interaction does not seem to be the primary binding force, but rather is induced upon intrinsic Lewis acid-base complexation. ${ }^{9}$ This aspect was further demonstrated by a ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2},-78\right.$ ${ }^{\circ} \mathrm{C}$ to room temperature) competition experiment using a $1: 1: 1$ mixture of $\mathrm{ATPH}, \mathrm{PhCHO}$, and PhCOCl . The analysis shows $K_{\mathrm{PhCOCl}} / K_{\mathrm{PhCHO}}=([\mathrm{ATPH} \cdot \mathrm{PhCOCl}] /[\mathrm{ATPH} \cdot \mathrm{PhCHO}])\left([\mathrm{PhCHO}]_{\text {free }} /\right.$ $\left.[\mathrm{PhCOCl}]_{\text {free }}\right)<3.5 \times 10^{-3},{ }^{10}$ suggesting that PhCOCl forms complexes that are less stabilized than those of PhCHO by more than $14 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (at 298 K). It should be emphasized that the relative destabilization, i.e., the higher reactivity of ATPHPhCOCl , compared with ATPH-PhCHO, might be compensated for to some extent by the formation of the "molecular tweezer".

When t - BuLi was used for the tert-butylation of ATPHPhCHO, the 1,6-adduct, but no 1,4-adduct, was produced. ${ }^{2 \mathrm{a}}$ This could be ascribed to the distinctive structure of ATPH-PhCHO, which is not driven to π-sandwiching (Figure 3a). The two ortho positions of ATPH-PhCHO are sterically encumbered to an equal degree, while one of the two ortho positions (the asterisked ortho position: 1,4-addition site) of $\mathrm{ATPH}-\mathrm{PhCOCl}$ is sterically deshielded due to the sandwich structure (Figure 3b). Alkyllithiums are prone to 1,4 -addition with ATPH-PhCOCl in the order $\mathrm{MeLi}>\mathrm{BuLi}>s-\mathrm{BuLi}>t$ - $\mathrm{BuLi},{ }^{11}$ although they show a general preference for 1,6-selectivity. Unexpectedly, we observed complete regiochemical reversal according to the size of RLi upon addition to acid chloride complexes 12 and 14: 1,6-selectivity predominated with t-BuLi to give $\mathbf{1 3 c}$ and $\mathbf{1 5 d}$, whereas MeLi underwent 1,4 -addition exclusively to give $\mathbf{1 3 a}, \mathbf{b}$ and $\mathbf{1 5 a} \mathbf{a} \mathbf{b}$ (Scheme 2).
(7) ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2},-30^{\circ} \mathrm{C}\right)$ chemical shifts: PhCHO (191.9 ppm); ATPH-PhCHO (201.4 ppm); PhCOCl (168.0 ppm); and ATPH-PhCOCl (185.0 ppm). We can exclude the species $\left[\mathrm{PhC} \equiv \mathrm{O}^{+}\right]\left[\mathrm{ATPH} \cdot \mathrm{Cl}^{-}\right]$to account for this significant downfield shift, since a single crystal of ATPH-PhCOCl was grown in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane at $-20^{\circ} \mathrm{C}$ to give the structure shown in Figure 3b.
(8) The two phenyl rings of ATPH which form the π-sandwich are separated by ca. 7.0 \AA. This value is identical to the distance in "molecular tweezers" which can include aromatic guests by interactions between two π-donors and one π-acceptor, see: Zimmerman, S. C.; VanZyl, C. M.; Hamilton, G. S. J. Am. Chem. Soc. 1989, 111, 1373. See also ref 3 in the Supporting Information.
(9) Zimmerman (ref 8) pointed out that cooperative π-stacking with an electron donor-acceptor component can contribute to complex stability if hydrophobic forces or hydrogen bonding is present. In our case, the Lewis acid-base coordination may substitute for these forces and bonding.
(10) Although we encountered an experimental limit for measuring $K_{\text {PhCOCl }} /$ $K_{\text {Phcho }}$, the preferred order of binding to ATPH is $\mathrm{PhCO}_{2} \mathrm{Me}>\mathrm{PhCOCl}$, and the relative binding constant of $\mathrm{PhCO}_{2} \mathrm{Me}$ and PhCHO is $K_{\text {PhCOOMe }} / K_{\text {PhCHO }}=$ 3.5×10^{-3}. In these competition experiments using ATPH, we always observed a set of two chemical shifts, each corresponding to free and bound substrates, due to slow exchange at the NMR time scale.
(11) Exposure of ATPH-PhCOCl to these nucleophiles gives 1,6- and 1,4product ratios of 2.6:1 (MeLi), 4.5:1 ($n-\mathrm{BuLi}$), 14:1 ($\mathrm{s}-\mathrm{BuLi}$), and 39:1 (t $\mathrm{BuLi})$. A similar regiochemical trend was obtained previously using the ATPH $-\alpha$-naphthaldehyde complex (see ref 2 a).

Scheme 2

Scheme 3

Scheme 4

As shown in Figure 3b, complex $\mathbf{1 2}$ should orient itself so that the m-methyl substituted carbon occupies the less-congested meta site which is marked with an asterisk. Attack at both ortho positions of $\mathbf{1 2}$ is unfavorable, and hence bulky t-BuLi suffers 1,6 -addition to give 13c exclusively (Scheme 2). This observation is in contrast to the formation of 1,6 -adduct $\mathbf{1 5 d}$ accompanied by a small amount of 1,4 -adduct $\mathbf{1 5 c}$. The ratio of two different 1,4-adducts 13a,b could be explained along similar lines (Scheme 2): the asterisked ortho position, which is less congested than the other ortho position, is selectively methylated.

The ATPH- β-naphthaldehyde complex $(\mathrm{X}=\mathrm{H}$, Scheme 3) did not undergo conjugate addition even with t-BuLi. However, the reaction proceeded smoothly with the use of acid chloride complex 16. Of particular interest is the novel 1,8 -selectivity to give 17a (Scheme 3). In marked contrast, 1,4-addition predominated with the lithium enolate of 2-methylpropionate to give 18b in 66% yield (Scheme 3).

Another striking advantage of the present method can be seen in the reaction of 4 -chlorobenzoic acid chloride 19 with $t-\mathrm{BuMgBr}$ (3equiv) (Scheme 4). This facilitates a tandem 1,6-additionchloride elimination-rearomatization-1,4-addition sequence, i.e., in situ double conjugate addition, to give 20a and 20b in 73\% yield.

Supporting Information Available: Experimental procedures and analytical and spectral data for all new compounds (PDF). This material is available free of charge via the Internet at http://pubs.acs.org.

JA0014382

[^0]: (1) (a) Saito, S.; Yamamoto, H. Chem. Commun. 1997, 1585. (b) Yamamoto, H.; Saito, S. Pure Appl. Chem. 1999, 71, 235. (c) Saito, S.; Yamamoto, H. Chem. Eur. J. 1999, 5, 1959.
 (2) For preliminary results concerning nucleophilic addition to aromatic rings using ATPH, see: (a) Maruoka, K.; Ito, M.; Yamamoto, H. J. Am. Chem. Soc. 1995, 117, 9091. (b) Saito, S.; Shimada, K.; Yamamoto, H. Marigorta, E. M.; Fleming, I. Chem. Commun. 1997, 1299. (c) Saito, S.; Sone, T.; Yamamoto, H. Synlett 1999, 81.
 (3) The use of less nucleophile ($1.1-2.5$ equiv) gives the corresponding product in lower yield.
 (4) The single-crystal structures of ATPH-PhCHO and ATPH-PhCOCl were established for the first time in this paper. See Supporting Information for details.
 (5) The average bond length of $\mathrm{C}=\mathrm{O}$ in free RCOCl is ca. $1.18 \AA$. The $\mathrm{C}=\mathrm{O}$ of RCHO has a similar average length of ca. $1.22 \AA$. See also ref 1 in the Supporting Information.

[^1]: (6) For benzoyl chlorides, an unequal intensity of doublet is usually seen in the $\mathrm{C}=\mathrm{O}$ region. A second band is due to the Fermi resonance involving the stretch of the overtone of the $\mathrm{Ph}-\mathrm{C}$ which interacts with the carbonyl stretch. IR frequency: PhCHO ($1708 \mathrm{~cm}^{-1}$); ATPH-PhCHO ($1708 \mathrm{~cm}^{-1}$); $\mathrm{PhCOCl}\left(1770\left(\mathrm{C}=\mathrm{O}\right.\right.$ stretch) and 1728 ((due to the Fermi resonance) $\left.\mathrm{cm}^{-1}\right)$; $A T P H-\mathrm{PhCOCl}\left(1728 \mathrm{~cm}^{-1}\right)$. See also ref 2 in the Supporting Information.

